Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Science ; 379(6639): 1341-1348, 2023 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-36996212

RESUMEN

Classical statistical genetics theory defines dominance as any deviation from a purely additive, or dosage, effect of a genotype on a trait, which is known as the dominance deviation. Dominance is well documented in plant and animal breeding. Outside of rare monogenic traits, however, evidence in humans is limited. We systematically examined common genetic variation across 1060 traits in a large population cohort (UK Biobank, N = 361,194 samples analyzed) for evidence of dominance effects. We then developed a computationally efficient method to rapidly assess the aggregate contribution of dominance deviations to heritability. Lastly, observing that dominance associations are inherently less correlated between sites at a genomic locus than their additive counterparts, we explored whether they may be leveraged to identify causal variants more confidently.


Asunto(s)
Bancos de Muestras Biológicas , Genes Dominantes , Variación Genética , Herencia Multifactorial , Animales , Humanos , Cruzamiento , Genotipo , Modelos Genéticos , Fenotipo , Polimorfismo de Nucleótido Simple , Reino Unido
2.
Nature ; 604(7906): 509-516, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35396579

RESUMEN

Rare coding variation has historically provided the most direct connections between gene function and disease pathogenesis. By meta-analysing the whole exomes of 24,248 schizophrenia cases and 97,322 controls, we implicate ultra-rare coding variants (URVs) in 10 genes as conferring substantial risk for schizophrenia (odds ratios of 3-50, P < 2.14 × 10-6) and 32 genes at a false discovery rate of <5%. These genes have the greatest expression in central nervous system neurons and have diverse molecular functions that include the formation, structure and function of the synapse. The associations of the NMDA (N-methyl-D-aspartate) receptor subunit GRIN2A and AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptor subunit GRIA3 provide support for dysfunction of the glutamatergic system as a mechanistic hypothesis in the pathogenesis of schizophrenia. We observe an overlap of rare variant risk among schizophrenia, autism spectrum disorders1, epilepsy and severe neurodevelopmental disorders2, although different mutation types are implicated in some shared genes. Most genes described here, however, are not implicated in neurodevelopment. We demonstrate that genes prioritized from common variant analyses of schizophrenia are enriched in rare variant risk3, suggesting that common and rare genetic risk factors converge at least partially on the same underlying pathogenic biological processes. Even after excluding significantly associated genes, schizophrenia cases still carry a substantial excess of URVs, which indicates that more risk genes await discovery using this approach.


Asunto(s)
Mutación , Trastornos del Neurodesarrollo , Esquizofrenia , Estudios de Casos y Controles , Exoma , Predisposición Genética a la Enfermedad/genética , Humanos , Trastornos del Neurodesarrollo/genética , Receptores de N-Metil-D-Aspartato/genética , Esquizofrenia/genética
3.
Nat Genet ; 54(5): 541-547, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35410376

RESUMEN

We report results from the Bipolar Exome (BipEx) collaboration analysis of whole-exome sequencing of 13,933 patients with bipolar disorder (BD) matched with 14,422 controls. We find an excess of ultra-rare protein-truncating variants (PTVs) in patients with BD among genes under strong evolutionary constraint in both major BD subtypes. We find enrichment of ultra-rare PTVs within genes implicated from a recent schizophrenia exome meta-analysis (SCHEMA; 24,248 cases and 97,322 controls) and among binding targets of CHD8. Genes implicated from genome-wide association studies (GWASs) of BD, however, are not significantly enriched for ultra-rare PTVs. Combining gene-level results with SCHEMA, AKAP11 emerges as a definitive risk gene (odds ratio (OR) = 7.06, P = 2.83 × 10-9). At the protein level, AKAP-11 interacts with GSK3B, the hypothesized target of lithium, a primary treatment for BD. Our results lend support to BD's polygenicity, demonstrating a role for rare coding variation as a significant risk factor in BD etiology.


Asunto(s)
Trastorno Bipolar , Esquizofrenia , Proteínas de Anclaje a la Quinasa A/genética , Trastorno Bipolar/genética , Exoma/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Esquizofrenia/genética , Secuenciación del Exoma
4.
Hum Mol Genet ; 31(3): 481-489, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-34508597

RESUMEN

The use of external controls in genome-wide association study (GWAS) can significantly increase the size and diversity of the control sample, enabling high-resolution ancestry matching and enhancing the power to detect association signals. However, the aggregation of controls from multiple sources is challenging due to batch effects, difficulty in identifying genotyping errors and the use of different genotyping platforms. These obstacles have impeded the use of external controls in GWAS and can lead to spurious results if not carefully addressed. We propose a unified data harmonization pipeline that includes an iterative approach to quality control and imputation, implemented before and after merging cohorts and arrays. We apply this harmonization pipeline to aggregate 27 517 European control samples from 16 collections within dbGaP. We leverage these harmonized controls to conduct a GWAS of Crohn's disease. We demonstrate a boost in power over using the cohort samples alone, and that our procedure results in summary statistics free of any significant batch effects. This harmonization pipeline for aggregating genotype data from multiple sources can also serve other applications where individual level genotypes, rather than summary statistics, are required.


Asunto(s)
Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Estudios de Cohortes , Genotipo , Humanos , Polimorfismo de Nucleótido Simple/genética , Control de Calidad
5.
Cell Genom ; 2(9): 100168, 2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36778668

RESUMEN

Genome-wide association studies have successfully discovered thousands of common variants associated with human diseases and traits, but the landscape of rare variations in human disease has not been explored at scale. Exome-sequencing studies of population biobanks provide an opportunity to systematically evaluate the impact of rare coding variations across a wide range of phenotypes to discover genes and allelic series relevant to human health and disease. Here, we present results from systematic association analyses of 4,529 phenotypes using single-variant and gene tests of 394,841 individuals in the UK Biobank with exome-sequence data. We find that the discovery of genetic associations is tightly linked to frequency and is correlated with metrics of deleteriousness and natural selection. We highlight biological findings elucidated by these data and release the dataset as a public resource alongside the Genebass browser for rapidly exploring rare-variant association results.

6.
Nature ; 586(7831): 769-775, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33057200

RESUMEN

Myeloproliferative neoplasms (MPNs) are blood cancers that are characterized by the excessive production of mature myeloid cells and arise from the acquisition of somatic driver mutations in haematopoietic stem cells (HSCs). Epidemiological studies indicate a substantial heritable component of MPNs that is among the highest known for cancers1. However, only a limited number of genetic risk loci have been identified, and the underlying biological mechanisms that lead to the acquisition of MPNs remain unclear. Here, by conducting a large-scale genome-wide association study (3,797 cases and 1,152,977 controls), we identify 17 MPN risk loci (P < 5.0 × 10-8), 7 of which have not been previously reported. We find that there is a shared genetic architecture between MPN risk and several haematopoietic traits from distinct lineages; that there is an enrichment for MPN risk variants within accessible chromatin of HSCs; and that increased MPN risk is associated with longer telomere length in leukocytes and other clonal haematopoietic states-collectively suggesting that MPN risk is associated with the function and self-renewal of HSCs. We use gene mapping to identify modulators of HSC biology linked to MPN risk, and show through targeted variant-to-function assays that CHEK2 and GFI1B have roles in altering the function of HSCs to confer disease risk. Overall, our results reveal a previously unappreciated mechanism for inherited MPN risk through the modulation of HSC function.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Células Madre Hematopoyéticas/patología , Trastornos Mieloproliferativos/genética , Trastornos Mieloproliferativos/patología , Neoplasias/genética , Neoplasias/patología , Linaje de la Célula/genética , Autorrenovación de las Células , Quinasa de Punto de Control 2/genética , Femenino , Humanos , Leucocitos/patología , Masculino , Proteínas Proto-Oncogénicas/genética , Proteínas Represoras/genética , Riesgo , Homeostasis del Telómero
7.
Nat Neurosci ; 23(2): 185-193, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31932770

RESUMEN

Protein-coding de novo mutations (DNMs) are significant risk factors in many neurodevelopmental disorders, whereas schizophrenia (SCZ) risk associated with DNMs has thus far been shown to be modest. We analyzed DNMs from 1,695 SCZ-affected trios and 1,077 published SCZ-affected trios to better understand the contribution to SCZ risk. Among 2,772 SCZ probands, exome-wide DNM burden remained modest. Gene set analyses revealed that SCZ DNMs were significantly concentrated in genes that were highly expressed in the brain, that were under strong evolutionary constraint and/or overlapped with genes identified in other neurodevelopmental disorders. No single gene surpassed exome-wide significance; however, 16 genes were recurrently hit by protein-truncating DNMs, corresponding to a 3.15-fold higher rate than the mutation model expectation (permuted 95% confidence interval: 1-10 genes; permuted P = 3 × 10-5). Overall, DNMs explain a small fraction of SCZ risk, and larger samples are needed to identify individual risk genes, as coding variation across many genes confers risk for SCZ in the population.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Esquizofrenia/genética , Adulto , Niño , Familia , Femenino , Humanos , Masculino , Mutación , Padres , Secuenciación del Exoma
9.
Nat Neurosci ; 22(12): 1966-1974, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31768050

RESUMEN

To discover novel genes underlying amyotrophic lateral sclerosis (ALS), we aggregated exomes from 3,864 cases and 7,839 ancestry-matched controls. We observed a significant excess of rare protein-truncating variants among ALS cases, and these variants were concentrated in constrained genes. Through gene level analyses, we replicated known ALS genes including SOD1, NEK1 and FUS. We also observed multiple distinct protein-truncating variants in a highly constrained gene, DNAJC7. The signal in DNAJC7 exceeded genome-wide significance, and immunoblotting assays showed depletion of DNAJC7 protein in fibroblasts in a patient with ALS carrying the p.Arg156Ter variant. DNAJC7 encodes a member of the heat-shock protein family, HSP40, which, along with HSP70 proteins, facilitates protein homeostasis, including folding of newly synthesized polypeptides and clearance of degraded proteins. When these processes are not regulated, misfolding and accumulation of aberrant proteins can occur and lead to protein aggregation, which is a pathological hallmark of neurodegeneration. Our results highlight DNAJC7 as a novel gene for ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Exoma/genética , Predisposición Genética a la Enfermedad/genética , Proteínas de Choque Térmico/genética , Chaperonas Moleculares/genética , Estudios de Casos y Controles , Femenino , Variación Genética/genética , Humanos , Masculino
10.
Nat Genet ; 51(5): 793-803, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31043756

RESUMEN

Bipolar disorder is a highly heritable psychiatric disorder. We performed a genome-wide association study (GWAS) including 20,352 cases and 31,358 controls of European descent, with follow-up analysis of 822 variants with P < 1 × 10-4 in an additional 9,412 cases and 137,760 controls. Eight of the 19 variants that were genome-wide significant (P < 5 × 10-8) in the discovery GWAS were not genome-wide significant in the combined analysis, consistent with small effect sizes and limited power but also with genetic heterogeneity. In the combined analysis, 30 loci were genome-wide significant, including 20 newly identified loci. The significant loci contain genes encoding ion channels, neurotransmitter transporters and synaptic components. Pathway analysis revealed nine significantly enriched gene sets, including regulation of insulin secretion and endocannabinoid signaling. Bipolar I disorder is strongly genetically correlated with schizophrenia, driven by psychosis, whereas bipolar II disorder is more strongly correlated with major depressive disorder. These findings address key clinical questions and provide potential biological mechanisms for bipolar disorder.


Asunto(s)
Trastorno Bipolar/genética , Sitios Genéticos , Trastorno Bipolar/clasificación , Estudios de Casos y Controles , Trastorno Depresivo Mayor/genética , Femenino , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Polimorfismo de Nucleótido Simple , Trastornos Psicóticos/genética , Esquizofrenia/genética , Biología de Sistemas
11.
Nat Genet ; 51(3): 431-444, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30804558

RESUMEN

Autism spectrum disorder (ASD) is a highly heritable and heterogeneous group of neurodevelopmental phenotypes diagnosed in more than 1% of children. Common genetic variants contribute substantially to ASD susceptibility, but to date no individual variants have been robustly associated with ASD. With a marked sample-size increase from a unique Danish population resource, we report a genome-wide association meta-analysis of 18,381 individuals with ASD and 27,969 controls that identified five genome-wide-significant loci. Leveraging GWAS results from three phenotypes with significantly overlapping genetic architectures (schizophrenia, major depression, and educational attainment), we identified seven additional loci shared with other traits at equally strict significance levels. Dissecting the polygenic architecture, we found both quantitative and qualitative polygenic heterogeneity across ASD subtypes. These results highlight biological insights, particularly relating to neuronal function and corticogenesis, and establish that GWAS performed at scale will be much more productive in the near term in ASD.


Asunto(s)
Trastorno del Espectro Autista/genética , Predisposición Genética a la Enfermedad/genética , Polimorfismo de Nucleótido Simple/genética , Adolescente , Estudios de Casos y Controles , Niño , Preescolar , Dinamarca , Femenino , Estudio de Asociación del Genoma Completo/métodos , Humanos , Masculino , Herencia Multifactorial/genética , Fenotipo , Factores de Riesgo
12.
Cell Metab ; 29(4): 856-870.e7, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30686744

RESUMEN

The reactions catalyzed by the delta-5 and delta-6 desaturases (D5D/D6D), key enzymes responsible for highly unsaturated fatty acid (HUFA) synthesis, regenerate NAD+ from NADH. Here, we show that D5D/D6D provide a mechanism for glycolytic NAD+ recycling that permits ongoing glycolysis and cell viability when the cytosolic NAD+/NADH ratio is reduced, analogous to lactate fermentation. Although lesser in magnitude than lactate production, this desaturase-mediated NAD+ recycling is acutely adaptive when aerobic respiration is impaired in vivo. Notably, inhibition of either HUFA synthesis or lactate fermentation increases the other, underscoring their interdependence. Consistent with this, a type 2 diabetes risk haplotype in SLC16A11 that reduces pyruvate transport (thus limiting lactate production) increases D5D/D6D activity in vitro and in humans, demonstrating a chronic effect of desaturase-mediated NAD+ recycling. These findings highlight key biologic roles for D5D/D6D activity independent of their HUFA end products and expand the current paradigm of glycolytic NAD+ regeneration.


Asunto(s)
Ácidos Grasos Insaturados/metabolismo , Glucólisis , NAD/metabolismo , Animales , Células Cultivadas , delta-5 Desaturasa de Ácido Graso , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad
13.
PLoS Comput Biol ; 15(1): e1006734, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30640898

RESUMEN

Metabolomics is a powerful approach for discovering biomarkers and for characterizing the biochemical consequences of genetic variation. While untargeted metabolite profiling can measure thousands of signals in a single experiment, many biologically meaningful signals cannot be readily identified as known metabolites nor compared across datasets, making it difficult to infer biology and to conduct well-powered meta-analyses across studies. To overcome these challenges, we developed a suite of computational methods, PAIRUP-MS, to match metabolite signals across mass spectrometry-based profiling datasets and to generate metabolic pathway annotations for these signals. To pair up signals measured in different datasets, where retention times (RT) are often not comparable or even available, we implemented an imputation-based approach that only requires mass-to-charge ratios (m/z). As validation, we treated each shared known metabolite as an unmatched signal and showed that PAIRUP-MS correctly matched 70-88% of these metabolites from among thousands of signals, equaling or outperforming a standard m/z- and RT-based approach. We performed further validation using genetic data: the most stringent set of matched signals and shared knowns showed comparable consistency of genetic associations across datasets. Next, we developed a pathway reconstitution method to annotate unknown signals using curated metabolic pathways containing known metabolites. We performed genetic validation for the generated annotations, showing that annotated signals associated with gene variants were more likely to be enriched for pathways functionally related to the genes compared to random expectation. Finally, we applied PAIRUP-MS to study associations between metabolites and genetic variants or body mass index (BMI) across multiple datasets, identifying up to ~6 times more significant signals and many more BMI-associated pathways compared to the standard practice of only analyzing known metabolites. These results demonstrate that PAIRUP-MS enables analysis of unknown signals in a robust, biologically meaningful manner and provides a path to more comprehensive, well-powered studies of untargeted metabolomics data.


Asunto(s)
Biología Computacional/métodos , Espectrometría de Masas/métodos , Metaboloma , Metabolómica/métodos , Anciano , Anciano de 80 o más Años , Biomarcadores/análisis , Biomarcadores/metabolismo , Bases de Datos Factuales , Humanos , Redes y Vías Metabólicas/fisiología , Metaboloma/genética , Metaboloma/fisiología
14.
Nat Genet ; 51(1): 63-75, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30478444

RESUMEN

Attention deficit/hyperactivity disorder (ADHD) is a highly heritable childhood behavioral disorder affecting 5% of children and 2.5% of adults. Common genetic variants contribute substantially to ADHD susceptibility, but no variants have been robustly associated with ADHD. We report a genome-wide association meta-analysis of 20,183 individuals diagnosed with ADHD and 35,191 controls that identifies variants surpassing genome-wide significance in 12 independent loci, finding important new information about the underlying biology of ADHD. Associations are enriched in evolutionarily constrained genomic regions and loss-of-function intolerant genes and around brain-expressed regulatory marks. Analyses of three replication studies: a cohort of individuals diagnosed with ADHD, a self-reported ADHD sample and a meta-analysis of quantitative measures of ADHD symptoms in the population, support these findings while highlighting study-specific differences on genetic overlap with educational attainment. Strong concordance with GWAS of quantitative population measures of ADHD symptoms supports that clinical diagnosis of ADHD is an extreme expression of continuous heritable traits.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad/genética , Sitios Genéticos/genética , Predisposición Genética a la Enfermedad/genética , Polimorfismo de Nucleótido Simple/genética , Adolescente , Encéfalo/fisiología , Niño , Preescolar , Estudios de Cohortes , Femenino , Regulación de la Expresión Génica/genética , Estudio de Asociación del Genoma Completo/métodos , Humanos , Masculino , Riesgo
15.
Am J Hum Genet ; 102(6): 1204-1211, 2018 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-29861106

RESUMEN

There is a limited understanding about the impact of rare protein-truncating variants across multiple phenotypes. We explore the impact of this class of variants on 13 quantitative traits and 10 diseases using whole-exome sequencing data from 100,296 individuals. Protein-truncating variants in genes intolerant to this class of mutations increased risk of autism, schizophrenia, bipolar disorder, intellectual disability, and ADHD. In individuals without these disorders, there was an association with shorter height, lower education, increased hospitalization, and reduced age at enrollment. Gene sets implicated from GWASs did not show a significant protein-truncating variants burden beyond what was captured by established Mendelian genes. In conclusion, we provide a thorough investigation of the impact of rare deleterious coding variants on complex traits, suggesting widespread pleiotropic risk.


Asunto(s)
Mutación/genética , Sistemas de Lectura Abierta/genética , Bases de Datos Genéticas , Etnicidad/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Fenotipo , Proteínas/genética
16.
Proc Natl Acad Sci U S A ; 115(2): 379-384, 2018 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-29279374

RESUMEN

A major challenge in evaluating the contribution of rare variants to complex disease is identifying enough copies of the rare alleles to permit informative statistical analysis. To investigate the contribution of rare variants to the risk of type 2 diabetes (T2D) and related traits, we performed deep whole-genome analysis of 1,034 members of 20 large Mexican-American families with high prevalence of T2D. If rare variants of large effect accounted for much of the diabetes risk in these families, our experiment was powered to detect association. Using gene expression data on 21,677 transcripts for 643 pedigree members, we identified evidence for large-effect rare-variant cis-expression quantitative trait loci that could not be detected in population studies, validating our approach. However, we did not identify any rare variants of large effect associated with T2D, or the related traits of fasting glucose and insulin, suggesting that large-effect rare variants account for only a modest fraction of the genetic risk of these traits in this sample of families. Reliable identification of large-effect rare variants will require larger samples of extended pedigrees or different study designs that further enrich for such variants.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Predisposición Genética a la Enfermedad/genética , Variación Genética , Americanos Mexicanos/genética , Diabetes Mellitus Tipo 2/etnología , Diabetes Mellitus Tipo 2/patología , Salud de la Familia , Femenino , Frecuencia de los Genes , Predisposición Genética a la Enfermedad/etnología , Estudio de Asociación del Genoma Completo/métodos , Genotipo , Humanos , Masculino , Linaje , Fenotipo , Sitios de Carácter Cuantitativo/genética , Secuenciación Completa del Genoma/métodos
17.
Hum Genet ; 135(6): 625-34, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27221085

RESUMEN

With the rise of sequencing technologies, it is now feasible to assess the role rare variants play in the genetic contribution to complex trait variation. While some of the earlier targeted sequencing studies successfully identified rare variants of large effect, unbiased gene discovery using exome sequencing has experienced limited success for complex traits. Nevertheless, rare variant association studies have demonstrated that rare variants do contribute to phenotypic variability, but sample sizes will likely have to be even larger than those of common variant association studies to be powered for the detection of genes and loci. Large-scale sequencing efforts of tens of thousands of individuals, such as the UK10K Project and aggregation efforts such as the Exome Aggregation Consortium, have made great strides in advancing our knowledge of the landscape of rare variation, but there remain many considerations when studying rare variation in the context of complex traits. We discuss these considerations in this review, presenting a broad range of topics at a high level as an introduction to rare variant analysis in complex traits including the issues of power, study design, sample ascertainment, de novo variation, and statistical testing approaches. Ultimately, as sequencing costs continue to decline, larger sequencing studies will yield clearer insights into the biological consequence of rare mutations and may reveal which genes play a role in the etiology of complex traits.


Asunto(s)
Exoma/genética , Predisposición Genética a la Enfermedad , Variación Genética , Mutación/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Fenotipo
18.
Nature ; 506(7486): 97-101, 2014 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-24390345

RESUMEN

Performing genetic studies in multiple human populations can identify disease risk alleles that are common in one population but rare in others, with the potential to illuminate pathophysiology, health disparities, and the population genetic origins of disease alleles. Here we analysed 9.2 million single nucleotide polymorphisms (SNPs) in each of 8,214 Mexicans and other Latin Americans: 3,848 with type 2 diabetes and 4,366 non-diabetic controls. In addition to replicating previous findings, we identified a novel locus associated with type 2 diabetes at genome-wide significance spanning the solute carriers SLC16A11 and SLC16A13 (P = 3.9 × 10(-13); odds ratio (OR) = 1.29). The association was stronger in younger, leaner people with type 2 diabetes, and replicated in independent samples (P = 1.1 × 10(-4); OR = 1.20). The risk haplotype carries four amino acid substitutions, all in SLC16A11; it is present at ~50% frequency in Native American samples and ~10% in east Asian, but is rare in European and African samples. Analysis of an archaic genome sequence indicated that the risk haplotype introgressed into modern humans via admixture with Neanderthals. The SLC16A11 messenger RNA is expressed in liver, and V5-tagged SLC16A11 protein localizes to the endoplasmic reticulum. Expression of SLC16A11 in heterologous cells alters lipid metabolism, most notably causing an increase in intracellular triacylglycerol levels. Despite type 2 diabetes having been well studied by genome-wide association studies in other populations, analysis in Mexican and Latin American individuals identified SLC16A11 as a novel candidate gene for type 2 diabetes with a possible role in triacylglycerol metabolism.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Predisposición Genética a la Enfermedad/genética , Transportadores de Ácidos Monocarboxílicos/genética , Polimorfismo de Nucleótido Simple/genética , Alelos , Animales , Pueblo Asiatico/genética , Población Negra/genética , Estudios de Cohortes , Retículo Endoplásmico/genética , Femenino , Estudio de Asociación del Genoma Completo , Haplotipos/genética , Células HeLa , Humanos , Indígenas Norteamericanos/genética , Metabolismo de los Lípidos/genética , Hígado/citología , Hígado/metabolismo , Masculino , México , Hombre de Neandertal/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Triglicéridos/metabolismo , Población Blanca/genética
19.
Genet Epidemiol ; 37(1): 1-12, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23136122

RESUMEN

We describe a novel method for inferring the local ancestry of admixed individuals from dense genome-wide single nucleotide polymorphism data. The method, called MULTIMIX, allows multiple source populations, models population linkage disequilibrium between markers and is applicable to datasets in which the sample and source populations are either phased or unphased. The model is based upon a hidden Markov model of switches in ancestry between consecutive windows of loci. We model the observed haplotypes within each window using a multivariate normal distribution with parameters estimated from the ancestral panels. We present three methods to fit the model-Markov chain Monte Carlo sampling, the Expectation Maximization algorithm, and a Classification Expectation Maximization algorithm. The performance of our method on individuals simulated to be admixed with European and West African ancestry shows it to be comparable to HAPMIX, the ancestry calls of the two methods agreeing at 99.26% of loci across the three parameter groups. In addition to it being faster than HAPMIX, it is also found to perform well over a range of extent of admixture in a simulation involving three ancestral populations. In an analysis of real data, we estimate the contribution of European, West African and Native American ancestry to each locus in the Mexican samples of HapMap, giving estimates of ancestral proportions that are consistent with those previously reported.


Asunto(s)
Genética de Población , Haplotipos , Americanos Mexicanos/genética , Modelos Genéticos , Algoritmos , Población Negra/genética , Genoma Humano , Humanos , Indígenas Norteamericanos/genética , Desequilibrio de Ligamiento , Cadenas de Markov , Método de Montecarlo , Linaje , Polimorfismo de Nucleótido Simple , Población Blanca/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...